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ABSTRACT 

Genes or loci on chromosome underlying a quantitative trait are called Quantitative 
Trait Loci (QTL). Characterizing genes controlling quantitative trait on their position in 
chromosome and their effect on trait is through a process called QTL mapping. This 
research was focusing on the assessment of the performance of Maximum Likelihood 

(ML) and Regression (REG) approach employed in QTL mapping for binary trait by 
means of simulation study. The simulation study was conducted by taking into account 
several factors that may affect the performance of both approaches. The factors are: (1) 
marker density; (2) QTL effect; (3) sample size; and (4) shape of phenotypic distribution. 
From simulation study, it was obtained that LB and Piepho method showing similar 
performance in determining critical value in testing the existence of QTL for binary 
trait. The simulation study also indicating that both methods could be used in determining 
critical value in QTL mapping analysis for binary trait. In assessing the performance of 

ML and REG approach in QTL mapping analysis for binary trait, the two approaches 
showing comparable performance. As a result, in QTL mapping analysis, ML and REG 
approach could be used when dealing with binary trait.  
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INTRODUCTION 

Background 
 

Genes or loci on chromosome underlying a quantitative trait are called 

Quantitative Trait Loci (QTL). Many such traits are both important 
economically as well as biologically such as milk, meat or crop production. 

Hence, characterizing genes controlling quantitative trait on their position in 

chromosome and their effect on trait through a process called QTL mapping 
are needed. The QTL genotypes are unobserved. In addition, the environment 

also affects the trait making the characterization of QTL become complex. 
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The idea in locating QTL is if there is association among trait and 

DNA markers, then the QTL should located near the DNA markers. The 
statistical method in utilizing this association has been proposed, which were: 

(1) single marker (Sax, 1923); (2) interval mapping (Lander and Botstein (1989); 

(3) composite interval mapping (Jansen and Stam (1994) and Zeng (1994)); and (4) 
multiple interval mapping (Kao, Zeng, and Teasdale, 1999). However, all 

these methods assuming that the trait of interest is in continuous scale. On the 

other hand, many important traits are obtained in categorical scale, such as 

resistance for certain disease. If the resistance from the disease is obtained as 
suspect or resistance, then the trait is in binary scale, whether if the resistance 

scored on ordered scale varying from unaffected to dead then the trait is in 

ordinal scale. Another trait could also be obtained in nominal scale such as 
shapes and colors of flowers, fruits, and seeds in plants, as well as coat colors. 

From a theoretical point of view, QTL mapping method assuming continuous 

trait could not be applied to categorical trait. 

 
In dealing with binary trait, Xu and Atchley (1996) proposed likelihood 

based method by assuming there is continuous distribution called liability 

underlying binary trait by means of threshold model. Similar approach 
proposed by Hackett and Weller (1995) in dealing with ordinal trait. On the 

other hand, Hayashi and Awata(2006) proposed likelihood based 

approach in analyzing trait in nominal scale. 
 
During the development of statistical method in QTL mapping, the 

likelihood approach becomes the main approach in analyzing data. However, 

this approach is computationally intensive. In simplifying the computation, in 
the case of continuous trait, Haley and Knott (1992) proposed regression 

approach in interval mapping. The idea in their approach is the component 

of independent variable representing the QTL effect is replacing by their 

expected value conditional on the two markers flanked the interval. However, 
the regression approach in the case of categorical scales is not yet developed. 

Moreover, it is interesting to evaluate the performance of likelihood and 

regression approach in QTL mapping dealing with categorical trait. 
 
 

THEORY AND METHODS 

Backcross population 

In a classical backcross design, the population is generated by a 

heterozygous F1 backcrossed to one of the homozygous parents (for example, 

a cross of AaQqBb x AAQQBB)(see Figure 1). The rationale behind the 

interval mapping can be explained using co-segregation listed in the Table 1 
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(Liu, 1998). As mentioned above, the QTL genotypes are unobservable, but the 

probability of QTL genotypes could be obtained using the information from 

flanking markers genotypes as listed in Table 1. 
 

Trait in Binary Scale 

Threshold model and liability 

In dealing with binary trait, it is assumed that there is continuous distribution, 

say U, underlying binary trait, say Y, referred to as liability (Xu and 

Atchley, 1996). In relation between liability and binary trait (such as 

resistance to certain disease), it is assumed that there is threshold ( γ ) in the 

scale of liability, below which the individual has unaffected phenotype, and 

above which it is affected (see Figure 2). 
The relation can be summarized by: 

 

1;if 

0;if <

i
i

i

u y
y

u y

≥
= 


                      (1) 

 

Maximum likelihood (ML) approach 

Using liability model, the one-QTL ML mapping model for a backcross 

population can be written as: 

 

* ,
i i

i bxu µ ε= + + 1,2,...,i n=             (2)  

 

where iu  is the liability value for individual i, µ is the mean, b is the effect of 

QTL Q, xi* taking the value of 1(0) for homozygote QQ (heterozygote Qq), 

denotes the genotypes of Q, iε is environmental deviation and is assumed to 

follow N(0, σ2
). Since the liability is unobserved, the mean µ and variance of 

ε  can be set at any arbitrary value (for simplicity, it is determined that µ = 0 

and σ2
 = 1). 
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Figure 1: Conventionally defined backcross 

progeny for a QTL and two flanking markers. 

 

 

 

 

 

 

 

 

 
 

 
Figure 2. Liability and threshold model for binary trait 
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TABLE 1: Co-segregation pattern for backcross design in 

 interval mapping 

 

Marker 

Genotype 
 

 

Observed 

Count 
 

 

Frequency 

 

 

QTL Genotype Expected 

Value gi 
QQ Qq 

 

AABB 

AABb 

AaBB 

AaBb 
 

 

N1 

N2 

N3 

N4 
 

 

0.5(1-r) 

0.5r  

0.5r 

0.5(1-r) 
 

Joint frequency  

0.5(1-r) 

0.5r1 

0.5r2  

0 

0 0.5r1 

0.5r2 

0.5(1-r) 

 

 

 

 

 

 

 

 

Conditional frequency  

 
AABB N1 0.5(1-r) 1 0 µ1 

AABb N2 0.5r r2/r = 1-ρ r1/r = ρ (1- ρ) 

µ1+ 

ρµ  AaBB N3 0.5r r1/r = ρ 
 

r2/r = 1-ρ ρµ1+  

(1- ρ)µ2 

AaBb N4 0.5(1-r) 0 1 µ2 

Mean 0.25 µ1 µ2 0.5(µ1+µ2) 

 

 

 

Based on the conditional probability of iu  given ix *, the conditional 

probability of iy  given ix *is obtained by: 

 

( ) ( ) ( )i i i i i iP y x f u x d u x

γ

∞
∗ ∗ ∗= ∫  

1 ( ) ( ) 1 ( ) ( )i i i i i if u x d u x bx bx

γ

γ γ∗ ∗ ∗ ∗

−∞

= − = − Φ − = Φ −∫          (3) 

 

where ( )ξΦ stands for the standardized cumulative normal 

distribution function and ξ  is the argument. Analysis involving ( )ξΦ is 

referred to as probit analysis. However, the probit model is difficult to 

manipulate because numerical integration is required although the 
parameters are easy to interpret. So, a logistic model is employed to 

approximate ( )ξΦ for estimation purpose and is expressed by: 
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exp( )
( )

1 exp( )

ξ
ψ ξ

ξ
=

+
             (4) 

 

The relationship between a probit model and a logistic model is 

( ) (d )ξ ψ ξΦ ≈ , where d = π/√3. Therefore, 

 

{ }
{ }

exp ( )
( 1 )

1 exp ( )

i

i i
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d bx
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d bx

γ

γ

∗
∗

∗

−
= ≈

+ −
          (5) 

 

  

Since the QTL genotype ix
∗

 could be homozygote (1) or heterozygote 

(0) for an individual, the likelihood is then a mixture distribution with 

mixing proportions equivalent to the conditional probabilities of QTL 

genotypes given two flanking markers, 1iq  and 2iq  for the QTL 

genotypes QQ and Qq respectively (see Table 1). For n individuals in 

the sample, the likelihood function is: 

 

2
1

11 1

(1 ) .i i

n
y y

ij ij ij

j

L q p p
−

==

 
 = −
 
 
∑∏  

where 1ip and 2ip  denotes the conditional probability of 1iy =  

given the QTL genotypes 1ix
∗ =  and 0ix

∗ = , respectively. The log 

likelihood function is: 

 

1

2
1

1 1

log( (1 ) ).i

n
y y

ij ij ij
i j

l q p p
−

= =

= −∑ ∑            (6) 

 

The first partial derivatives are: 
 

1
1
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n
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i

l
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b
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1 0
1
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n

i i i i i i

i
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is the posterior probability of 1ix
∗ = . By treating iω as constants, the 

second partial derivatives are: 
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In obtaining the parameter estimates, the EM algorithm could be 

applied. The idea of EM algorithm is the likelihood solution of complete 

data is relatively simple compared to incomplete data (Pawitan, 2001).  
 

In QTL mapping, the unobserved QTL genotype ix
∗

 treated as 

missing data. The EM steps are as follows: 
 

1. Set up initial values of b and γ 
2. Calculate iω  (E-Step) 

3. Given iω , solve for b and γ us ing theNewton-Raphson iteration 
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(M-Step) as follow. Let g denote the vector of first partial 

derivatives and H be a matrix of second partial derivatives. If θ(t) 
is a vector of solutions at the tth step, thesolutions at the (t+1) 

step is θ(t+1) = θ(t) + H
-1
g 

4. Update the initial values and go to step 2 
5. Repeat steps 2-4 until convergence 

 

Regression (REG) approach 

Using liability model, the one-QTL REG mapping model for a backcross 

population can be written as: 
 

,i i iu bµ π ε= + + 1,2,...,i n=           (13) 

 

where ,i iu bµ ε+ +  have the same definitions as in model (2), and iπ  is 

the conditional expectation of QTL genotypes given the two flanking 

markers. The likelihood function is: 

 

1 1

1

(1 ) i

n
y y

ii
i

L p p
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where ip denotes the conditional probability of 1iy = given the iπ . The 

log likelihood function is: 

 

1

[ log (1 )(1 )].
n

i i i i
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The first partial derivatives are: 
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The second partial derivatives are 
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and 
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The procedure in obtaining parameter estimates are as follow. Let g 
denote the vector of first partial derivatives and H be a matrix of 

second partial derivatives. If θ(t) is a vector of solutions at the tth step, 

the solutions at the (t+1) step is 1( 1) ( ) .t t H gθ θ −+ = +  

 

 

Critical Value 

When we conducted QTL analysis at a certain point in the 
genome, we determine the type I error of the test equal to α. This kind of 

error is called comparison-wise error rate (CWER). However, in 

characterizing QTL, the analysis is performed by searching or 
scanning and conducting test at every point on the genome (genome scan) 

simultaneously. Then, the type I error of all the tests simultaneously is 

larger than α (This type I error related with genome scan simultaneously 
is called family-wise error rate/FWER). Hence, in characterizing QTL 

by genome scan, we are concerned with controlling FWER. 

There are several methods proposed in controlling FWER. Lander 

and Botstein (1989) proposed a method in controlling FWER by 
determining critical value which considering the size of the genome 

and the distribution of the trait. Consider an organism with C 

chromosomes and genetic length G, measured in Morgans. When no 
QTLs are present, the probability that the   test   statistic   exceeds   a   

high  level   T   is 2( 2 ) ( )C Gt tχ≈ , where t = (2 log 10)T and x
2
(t) denotes 

the cumulative distribution function of the x
2
 distribution with 1df. In 

order to make the probability less than α that a false positive occurs 
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somewhere in the genome, the appropriate LOD threshold is thus 

(2log10)tTα α≈ = , where tα  solves the equation 

2
( 2 ) ( )C Gt x tα αα = + (Lander and Botstein,1989). 

 

RESULT AND DISCUSSION 

For marker density factor, estimation of the threshold and QTL 

effect using REG approach was close to the ones obtained using ML 

approach. The estimation of the QTL position obtained using ML and 
REG approach also indicating similar result. On the other hand, the 

empirical statistical power obtained using 5% critical value using LB 

method showing similar result to the Piepho method. In this simulation, 
the marker density factor affect the performance of the ML and REG 

approach on the estimation of the threshold, QTL effect, QTL position, as 

well as the statistical power. Here, as the marker denser, the estimation 

of the threshold, QTL effect, and QTL position tends to be close to the 
true value. Moreover, the statistical power of the ML and REG 

approach was higher for the denser marker than for the less dense ones. 

 
The performance of REG approach was comparable to ML 

approach in the investigation of the shape of phenotypic distribution 

(Table 3). As for marker density factor, LB and Piepho method also has 
similar performance in determining critical value in testing the 

existence of QTL. In this simulation, it was obtained that the 

skewed phenotypic distribution has effect  in lowering the 

statistical power for both statistical approaches, especially for REG 
approach. 

 

The investigation on effect of sample size factor on the 
performance of statistical approach yield result that REG approach 

also has similar performance with ML approach (Table 4).The 

performance of LB method and Piepho method in determining 
critical value are also comparable. In addit ion, the sample size 

factor affecting the performance of the ML and REG approach on 

the estimation of threshold and QTL effect, the QTL posit ion as 

well as the statistical power in detecting QTL. Here, the QTL has   
higher   power   to   be   detected   and   the threshold, QTL effect,  

and QTL posit ion were more precisely estimated for larger sample 

size than for smaller sample size. 
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In the evaluation of the effect of QTL effect, the REG 

approach showing similar performance with ML approach on the 

estimation of the threshold, QTL effect, QTL position, as well as 
statistical power in detecting QTL (Table 5). On the other  hand,  the 

LB and Piepho method showing similar result in detecting QTL 

as in the evaluation of the other factors. In addition, the QTL 
effect factor affecting the performance of the ML and REG 

approach on the statistical power in detecting QTL as well as the 

QTL posit ion estimated. Here, QTL with larger effect tends to 
have a higher power to be detected and the QTL position was 

more precisely estimated than for smaller one. 
 

TABLE 2: Comparison of the performance of ML and REG approach for 

various marker densities (d) for binary trait 

 
d  

( cM)  

Parameter Estimation with likelihood approach Estimation with regression approach 

 

 

N a me  True 

Value 

 

 

Mea n 

 

 

STD
a
 

 

 

Power (%)
b
 Position

c
 Mean STD

a
 Power (%)

b
  

 

Position
c
 

 

 

 

 

 

 

 

 

 

LB 
Piepho  

LB 
  Piepho 

 

20 

 

Threshold 

 

0.3334 

 

0.3098 

 

0.2697 

 

46.0 

 

40.5 
33.43 

 

(20.46) 

 

0.533.43 

 

0.2857 

 

46.0 

 

40.0 
33.36 

 

 

QTL Effect 0.6667 0.6148 0.4842  

 

 

 

0.6081 0.4909  

 

 

 

(20.19) 

 
10 Threshold 0.3334 0.3115 0.2785 48.5 50.0 30.66) 0.3058 0.2651  

48.0 

 

 

 

49.5 

 

 

30.65 

 

(23.13) 
 

 

QTL Effect 0.6667 0.6175 0.4802  

 

 

 

(23.15 

 

0.6149 0.4811 

5 Threshold 0.3334 0.3374 0.2486 52.5 54.5 26.42 0.3164 0.2380 52.0 54.0 26.08 

 

 

QTL Effect 0.6667 0.6499 0.4259  

 

 

 

(19.56) 

 

0.6556 0.4089  

 

 

 

(19.17) 

 
 

aSTD stands for standard deviation of the estimated parameters obtained 

from 200 replicated simulations.  
bEmpirical  statistical  power  was calculated as the proportion  of the 

simulated samples among 200 replicates with the highest test  

statistical value along the genome greater  than the critical value 

obtained using LB and Piepho method at 5% significant value.  
cThe true QTL position  is at  25 cM of the simulated chromosome.   

The standard devia tions of the estimated QTL positions (obtained from 

200 replicates) are given in parentheses. 
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TABLE 3: Comparison of the performance of ML and REG approach for various 
shapes of phenotypic distribution for binary trait 

 
Phenotypic 

distribution 

 

 

 

Parameter Estimation with likelihood approach Estimation with regression approach 

 

N a me  

 

 

True 

Value 

 

 

 

Mea n 

 

STD 

Power (%)  

Positio

 

 

Mean 

 

 

 

 

STD 

 

 

Power (%) Position 

 

 

 

 

 

LB 
Piepho  

 

LB Piepho  

 

Uni form 

distribution 

(1:1) 

 

Threshold 0.3334 0.3254 0.1648 85.5 85.0 26.64 0.3361 0.1416 84.5 86.0 26.49  

QTL Effect 0.6667 0.6277 0.2741  

 

 

 

(15.92) 

 

0.6740 0.2214  

 

 

 

(11.17) 

 

Skewed 

distribution 

(7:3) 

 

Threshold 0.8578 0.8273 0.1715 80.0 78.5 26.35 0.8149 0.1155 75.0 77.5 26.88  

QTL Effect 0.6667 0.6827 0.2699  

 

 

 

(11.57) 

 

0.6767 0.1920  

 

 

 

(11.05) 

 

 
see the legends in Table 2 

 
 

TABLE 4: Comparison of the performance of ML and REG approach for various 

sample sizes (n) for binary trait 

 
Sample 

size 

 

 

 

Parameter Estimation with likelihood approach Estimation with regression approach 

 

Name 

 

 

True 

Value 

 

 

 

Mean 

 

 

 

STD 

 

 

Power (%)  

Position 

 

Mean 

 

STD 

Power (%)  

Position 

 

 

LB Piepho LB Piepho 

100 Threshold 0.3334 0.3062 0.2445 46.5 48.0 27.86  0.2975 0.2530 47.0 47.5 27.84 

 

 

QTL Effect 0.6667 0.6040 0.4482  

 

 

 

(22.32) 

 

0.6036 0.4481  

 

 

 

(22.31) 

 200 Threshold 0.3334 0.3353 0.1258 86.0 86.0 26.27 0.3222 0.1177 86.0 86.0 26.24 

 

 

QTL Effect 0.6667 0.6574 0.1695  

 

 

 

 

 

0.6573 0.1689  

 

 

 

 

 300 Threshold 0.3334 0.3215 0.0933 94.5 95.5 25.28  0.3289 0.1021 94.5 95.5 25.28  

 

 

QTL Effect 0.6667 0.6507 0.1488  

 

 

 

(5.56) 

 

0.6500 0.1486  

 

 

 

(5.57) 

 500 Threshold 0.3334 0.3162 0.0768 100 100 

 
 

25.13  0.3167 0.0769 100 100 25.13  

 
 

QTL Effect 0.6667 0.6330 0.1138  

 

(1.90) 

 

0.6329 0.1139  

 

 

 

(1.95) 

 
see the legends in Table 2 
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TABLE 5: Comparison of the performance of ML and REG approach under 

various levels of QTL effect for binary trait 

 
Heritability 

(h
2
) 

 

 

 

Parameter Estimation with likelihood approach Estimation with regression approach 

 

N a me  

 

 

True 

Value 

 

 

 

Mea n 

 

 

 

STD 

 

 

Power (%)  

Position 

 

 

 

Mean 

 

 

 

STD 

 

Power (%) Position 

 LB Piepho LB Piepho 

0.05 Threshold 0.2294 0.2046 0.1814 38.0 40.0 29.70 0.029.70 0.1805 38.0 39.5 29.72 

 

 

QTL Effect 0.4588 0.4032 0.3223  

 

 

 

(23.68) 

 

0.4030 0.3218  

 

 

 

(23.70) 

 
0.10 Threshold 0.3334 0.3207 0.1353 77.0 78.5 26.47 0.3140 0.1305 77.0 78.5 26.50 

 

 

QTL Effect 0.6667 0.6346 0.2047  

 

 

 

(9.86) 

 

0.6346 0.2047  

 

 

 

(9.86) 

 
0.20 Threshold 0.5000 0.4776 0.1322 100 100 24.87 024.87 0.1307 100 100 24.87 

 

 

QTL Effect 1.0000 0.9480 0.1827  

 

 

 

(2.27) 

 

0.9474 0.1818  

 

 

 

(2.31) 

 
0.40 Threshold 0.8165 0.7813 0.1632 100 1000 24.75 0.7809 0.1498 100 100 24.76 

 

 

QTL Effect 1.6330 1.5629 0.2436  

 

 

 

(1.38) 

 

1.5633 0.2439  

 

 

 

(1.61) 
 see the legends in Table 2 

 

CONCLUSION 

From simulation study, it was obtained that LB and Piepho 

method showing similar performance in determining critical value in 
testing the existence of QTL for binary trait. The simulation study also 

indicating that both methods could be used in determining critical 

value in QTL mapping analysis for binary trait. In assessing the 
performance of ML and REG approach in QTL mapping analysis for 

binary trait, the two approaches showing comparable performance. 

Consequently, when dealing with binary trait, QTL mapping analysis 
could be performed by ML or REG approach. 
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